

STUDY REPORT

STUDY TITLE: Authenticating sample X

SPONSOR: Sponsor.

SPONSOR STUDY NUMBER: Sample-Study-001

SPONSOR REPRESENTATIVE: Sample-Sponsor

TELEPHONE: (111) 111-11111 EMAIL: email@email.com

TESTING FACILITY:

Crown Bioscience Suzhou Room 303, Building A6, No. 218 Xinghu Street Industrial Park Suzhou City Jiangsu Province, China

CROWN BIOSCIENCE STUDY NUMBER: 12345

STUDY DIRECTOR: Director Name.

TELEPHONE: (415) 444-4444 EMAIL: email@email.com

STUDY INITIATION DATE: 1 September 2020 STUDY COMPLETION DATE: September 15, 2020

DATE OF DOCUMENT: September 15, 2020

DOCUMENT AUTHOR:

VERSION OF DOCUMENT: Version 1.0

TABLE OF CONTENTS

1.	OVERVIEW	2
1.1.	Specimen Description	. 2
1.2.	Services Performed	. 2
2.	RESULT SUMMARY	. 1
3.	RESULTS	2
3.1.	Mouse ratio	. 2
3.2.	Matched sample	. 3
3.3.	Heterogeneity ratio	. 4
3.4.	Contaminant detection	. 5
3.5.	Viral infection & mycoplasma contamination	. 6
3.6.	Gender identification	. 7
3.7.	Genetic admixture analysis	. 8
4.	SIGNATURES	9
4.1.	Sponsor Approval	. 9
4.2.	Crown Bioscience (Suzhou) Approval	. 9
5.	References	10

1. OVERVIEW

1.1. SPECIMEN DESCRIPTION

Species: patient-derived xenograft (PDX) tumor sample dissected from an immunodeficient mouse. Number of Specimens: 1

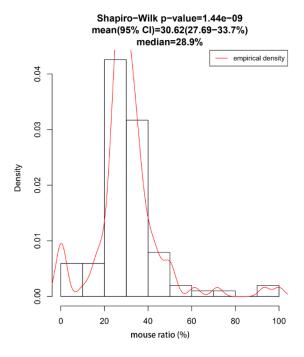
QC-ID	Sample ID	Species
20200819-02699	GA9273-R1P2-20191119-R-37790	Human

1.2. SERVICES PERFORMED

Service: Cell Line and Model Authentication - Comprehensive **Service items:**

- Sample identification by matching to standard PDX and cell line databases
- Human-mouse interspecies contamination quantification
- Sample genetic heterogeneity quantification
- Sample contamination check and contaminant identification (if the contaminant is already in the standard PDX and cell line databases)
- Mouse syngeneic model identification (if applicable)
- Mouse strain (if applicable)
- Viral infection detection
- Mycoplasma contamination detection
- Gender identification for human samples
- Genetic admixture analysis for human samples

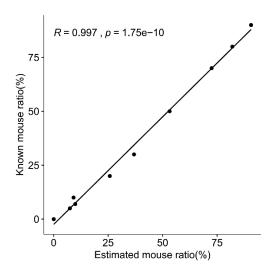
2. RESULT SUMMARY


QC Item	Results
Mouse ratio	28.9%
Matched sample	GA9273
Heterogeneity ratio*	1.91%
Contaminant detected	None
Mouse syngeneic model	NA
Mouse strain	NA
Viral infection	EBV
Mycoplasma contamination	Negative
Gender	Male
Genetic admixture (CEU: CHB: YRI) **	0.002: 0.002: 0.996

^{*:} See definition in Reference 1.

^{**:} The three reference populations are: Han Chinese (CHB), Nigeria Yoruba (YRI) and Utah residents with Northern and Western European ancestry from the CEPH collection (CEU).

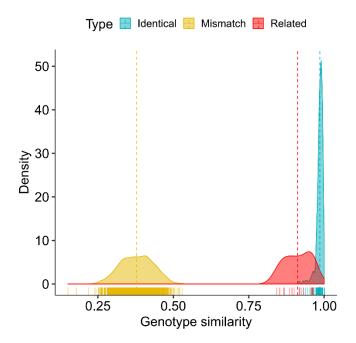
3. RESULTS


3.1. MOUSE RATIO

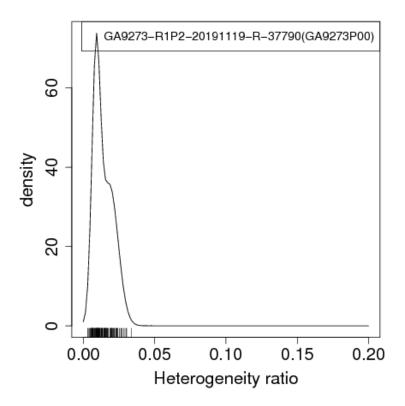
Comment: Mouse ratio is estimated based on 108 100-300bp human-mouse homologous segments that share identical flanking sequences and are amplified by same primers.

Conclusion: The mouse ratio in Sample GA9273-R1P2-20191119-R-37790 is 28.9%.

Technical note: This assay can estimate mouse ratio in a human-mouse mix with high accuracy (Figure 4A below, adopted from Reference [1]), and can reliably detect mouse ratio at ~0.1% [1].

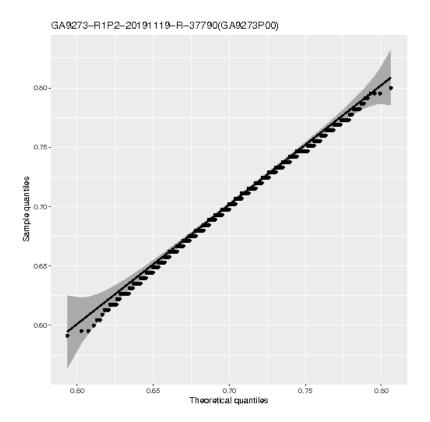


3.2. MATCHED SAMPLE

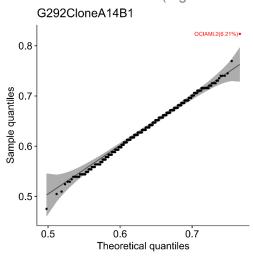

Reference	# Matched SNPs	# Nonmatched SNPs	Total SNPs	Genotype similarity (%)
GA9273P00	222	5	227	97.80
CR5076P00	111	98	209	53.11
LU9342P00	115	103	218	52.75
CL01123	111	100	211	52.61
LU11885P00	109	99	208	52.40

Conclusion: Sample GA9273-R1P2-20191119-R-37790 is GA9273 based on its high identity to GA9273P00—the standard reference sample of PDX model GA9273

Technical note: Genotype similarities calculated from >200 SNPs are always >90% between identical samples even at the presence of minor contaminant. In contrast, genotype similarities between unrelated samples are almost always below 50%. If two samples are related, for example by deriving from same parental sample, their genotype similarity can range from about 80% to close to 100%, depending on their genetic divergence. Below: Figure 1A from Reference [1].


3.3. HETEROGENEITY RATIO

Conclusion: Sample GA9273-R1P2-20191119-R-37790 has a heterogeneity ratio 1.91% with the above distribution of heterogeneity ratios for 227 SNPs. This heterogeneity ratio is within the standard value of PDX models with ~30% mouse ratios (see Figure 1C of Reference 1).


Technical note: Heterogeneity ratio is a quantitative measure for genetic heterogeneity of a sample by using the >200 SNPs and is defined in Table 1 of Reference [1]. Heterogeneity ratio comes from genetic heterogeneity and contamination. High heterogeneity ratio, as well as a two/three-modal distribution, usually indicates possible contamination. See Reference [1] for details.

3.4. CONTAMINANT DETECTION

Conclusion: No contaminant is detected for sample GA9273-R1P2-20191119-R-37790.

Technical note: In this quantile—quantile plot, each dot is a reference cell line; theoretical and sample quantiles were calculated from a beta distribution fitted to genotype similarities between the test sample and all reference samples. The 99% confidence band is shaded. A reference sample was denoted as contaminant if (1) it had the highest genotype similarities, (2) its genotype similarity was above the 99% confidence upper bound in the quantile—quantile graph and (3) its P-value was <1.0E-6 in the fitted beta distribution. An example for contaminant is shown below (Figure 3D from Reference [1]).

3.5. VIRAL INFECTION & MYCOPLASMA CONTAMINATION

Virus & Mycoplasma	Number of high coverage bases
CMV	0
EBV	428
HBV	0
HIV	0
HPV16	0
HPV18	0
Mycoplasma	0

Comment: If the read depth is > 1000, a base is accounted as a high coverage one.

CMV: Cytomegalovirus

EBV: Epstein-Barr virus

HBV: Hepatitis B virus

HIV: Human immunodeficiency virus

HPV: Human papillomavirus

Conclusion: Sample GA9273-R1P2-20191119-R-37790 is EBV positive, and CMV/HBV/HIV/HPV16/HPV18/Mycoplasma negative.

Technical note: Multiple pairs of primers were used to detect each virus, and one pair of universal primers were used to detect all mycoplasma species. See Reference [1] for details.

3.6. GENDER IDENTIFICATION

SNP-anchored Y chromosome segment	Read depth
hg19_chrY_14832620	2713
hg19_chrY_15467824	3723
hg19_chrY_15591537	4342

Comments:

- (1) If the sum of read depths of the 3 Y-chromosome SNPs >1000, the sample is identified as "Male"; If the sum if <300, the gender is predicted as "Female"; If the estimated mouse ratio is over 95%, or the sum of depths is less than 1000 and more than 300, the gender is not assigned.
- (2) Because Y chromosome is frequently lost in cancer genomes, it is advised to use microscope-based observation to confirm the gender prediction.

Conclusion: Sample GA9273-R1P2-20191119-R-37790 is male.

3.7. GENETIC ADMIXTURE ANALYSIS

Based on the genotyping data of 143 SNPs, the genetic admixture of this sample is 0.2% CHB, 0.2% CEU, and 99.6% YRI, where CHB stands for Han Chinese, CEU for Utah residents with Northern and Western European ancestry from the CEPH collection, YRI for Nigeria Yoruba.

Conclusion: Sample GA9273-R1P2-20191119-R-37790 is predominantly of YRI origin.

4. SIGNATURES

4.1.	SPONSOR APPROVAL	
Spon	nsor Representative	Date
4.2.	CROWN BIOSCIENCE (SUZHOU) APPROVAL	
Crow	n Bioscience Representative	 Date

5. REFERENCES

1. Chen,X., Qian,W., Song,Z., Li,Q. and Guo,S. (2020) Authentication, characterization and contamination detection of cell lines, xenografts and organoids by barcode deep NGS sequencing. *NAR Genomics and Bioinformatics*, **2**, 3.

https://academic.oup.com/nargab/article-abstract/2/3/lqaa060/5893932